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1.Introduction 

Since the beginning of dynamic pile testing methods the 
theoretical basis has always been developed, resp. expanded 
according to the needs of practical application (ref.1). Whenever 
difficulties in the interpretation of hitherto unknown signals 
arose, a thorough look over the theoretical basis showed unused 
features of the mechanics of wave propagation and thus made the 
interpretation of the signals possible. This interaction of theory 
and practice in dynamic pile testing lead to a constant growth of 
the range of successful applications. The latest step in this 
proces has been the application to bored piles of large diameter 
(over 1.0 m). The first signals showed that the experience of pile 
driving is not sufficient for the use of dynamic testing of 
cast-in-situ piles. 

Among the numerous theoretical investigations that have been 
carried out in our attempt to get a solution for bored piles two 
points are of general interest and will be given here : 
1. General solution of a differential equation of one-dimensional 
wave propagation 
2. Uniqueness of CAPWAP-Solutions. 

The central point in theoretical investigations of dynamic pile 
testing is the mechanics of one dimensional wave propagation. To 
solve the difficulties that are connected to the application of 
dynamic pile testing to bored piles therefore means primarily to 
understand the mechanics of wave propagation . For a given 
mechanical model of pile and soil a differential equation can be 
formulated that can be solved for arbitrary initial conditions of 
force and velocity. The solution in form of a force-time-history 
or a velocity-time-history will render some knowledge of the 
signals to be expected in reality . 

Solvability and uniqueness of solution are the most important 
properties of any mathematical problem. With respect to the 
capacity determination of piles the steps are 
1. Find a mechanical model, 
2. Find a mathematical problem formulation. 
The mechanical model is usually some kind of discrete 
spring-mass-sytem, which give a unique output signal for a given 
input signal. The problem is to find the best 'match' of measured 
and computed signals by altering the model constants. In 
structural dynamics this is known as a problem of systems 
analysis. To find the 'best match' can suitably be formulated as a 
problem of mathematical optimization . Well-known conditions of 
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solvability and uniqueness of the theory of mat hematical 
optimization may be used to improve CAPWAP-type procedures . 

2.Hu~erical Solution of One-Dimensional Wave Equation 

The uniaxial dynamic response of a rod can be descri bed by a 
partial differential equation (ref . 2): 

ii 
with 

c2 u" 0 
ii = a : acceleration of pile element, 
u" : space derivative of strain , 
u u(x,t) displacement function, 
c : velocity of wave propagation . 

(1) 

For low frequency excitations in the linear elastic range modal 
analysis is used as an adequate solution method (ref . 2). I n t he 
case of impact or imru lsive loadings the high f r equency vibrations 
prevail and a direct solution by d'Alemberts approach can be 
advantageously applied (ref.1,2). 
For investigations of the movements of piles surrounded by soil 
the dynamic equilibrium condition (1) has to include a tangent i a l 
force representing skin friction (see fig.1) 
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Figure 1 : Differential Pile Element 
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The internal force N is dependent on strains u' and in addition 
to (1) dependent on strain velocities u' because of material 
dlillqling effects . The tangential force T represents soil f riction 
and is taken to be dependent on the displacements u and velocities 
u because of soil frictional damping. The complete partial 
differential equation of dynamic equilibrium for the pile i s 
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therefore given as (ref-.3) 

pii E A u" 0. (2) 

The first two terms of (2) are equivalent to (1) . 
Soil resistance forces are in general nonlinear and because of 
unloading depend on load history. The real behaviour of soil is 
approximated by the simple bilinear model (fig.l). For the 
nonlinear problem with arbitrary boundary conditions a solution 
can only be found by a numerical procedure (ref. 2, 4) . A special 
kind of finite element formulation is adopted here. 
A discretization in space of (2) can be achieved by means of the 
principle of virtual work (ref.2) and leads to the matrix form of 
the dynamic equilibrium equations which is widely used in 
structural dynamics 

!"_(t) • (3) 

The vector ~ contains the nodal displacements which are only time 
dependend. Mass matrix H and stiffness matrix ~ are assembled 
by using element matrices for pin-jointed bars (ref.2,4). 
Assembling is done easily according to the pile geometry (ref.3). 
The material damping matrix 9N may be formulated mass and 
stiffness dependend as is usually done for Raileigh damping 

(4) 

Element matrices ~ and ~ which represent soil behaviour are 
gained by the assumption of uniformly distributed soil frictfon 
acting on linear displacements between the nodes 

[
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116 J 
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The assembly for the global matrices ~ and Qs has to be done 
according to the structural matrices. When the plastic limit is 
reached the stiffness matrix ~ has to be updated and constant 
soil frictional forces are to replace the respective terms in (3). 

The solution of lhe differential equation (3) must be found by 
numerical integration because of the nonlinear soil behaviour. 
Experience with the Wilson- Newmark method (ref. 4) that has been 
tried first because of the possibility to improve the numerical 
stability showed good results only for small elements. For larger 
elements the instant change of the stiffness properties when 
reaching a quake induced high frequency oscillations in the 
acceleration that lead to false displacement and force results. 
Therefore an equilibrium iteration had to be implied as is used in 
the usual CAPWAP explicit integration scheme (ref.4). As the 
matrices are tridiagonal and positiv definite or semidefinite 
special solution procedures have been programmed. 
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3.Simulation of Dynamic Pile Testing 

A nine meter cast-in-situ pile is used as test example (fig.2). 
The impact of the drop weight ( m = 10 t , h = 3. 0 m ) has been 
modelled by a bell-shaped load function (ref.5). 
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Figure 2 : Test pile 

With the given pile data a static load-displacement curve can be 
computed. In fig.3 the load displacement relationship for top and 
bottom are combined and may be compared to measured curves. Of 
course toe resistance remains constant after the toe quake has 
been reached. 

SET 
rM1 

LOAD 

BOTTOM 

16 EMNJ 

Figure 3 : Static load displacement curves 

The dynamic results are given in fig.4. A 'T' is denoting values 
belonging to the pile top , a 'B' is denoting values belonging to 
the pile toe ('bottom'). 
In fig. 4a it can be seen that the displacement of the pile top 
reaches a maximum of 8 mm, the pile toe 6 mm. The movement is 
coming to an end with a permanent set of 5 mm. Velocities 
(fig.4b) and accelerations (fig.4c) are converging to zero value. 
As can be seen by fig.4d the top force is set equal to the applied 
bell-shaped load function, the bottom force is limited by the 
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prescribed soil condition and converges to a residual value. 
Top force and proportionalized velocity are given in ' fig.4e. This 
is the basic graph of the case method, normally gained by 
measurements. A gradual increase of the mantle resistance as well 
as the upwards propagating tension wave arriving at 2L/c at the 
pile top can clearly be recognised. 
In fig.4f bottom force versus bottom displacement is given, 
showing how damping is increasing the resistance force and at the 
same time smoothening the sharp edge of the bilinear soil model. 

4.Dynamic Pile Capacity Determination as a Problem of Systems 
Analysis 

The classical task of structural dynamics is to determine the 
response of a given structure to a specified exciting force. When 
experiments are carried out the question is mainly to determine 
material behaviour i.e. material constants . A redundant set of 
measured values describe the system behaviour, especially the 
transfer behaviour. In dynamic pile testing measured force and 
accelerations are used. The procedure is to take the one as input 
for a trial system, compute the output and compare it to the other 
measured signal. By altering the system and/or its variable 
properties computed and measured signals are matched. If computed 
and measured signals coincide within prescribed limits, the system 
i.e. soil model is found, the problem solved. In contrast to 
classical mechanics this second problem is known as Systems 
Analysis (ref.6). The qualitative difference of the two problems 
is visualized in fig. 5 . 

structural dynamics 

systems analysis 
CAPWAP 
WAPCAP 

INPUT 

force 
wind 
impact 

SYSTEM OUTPUT 

structure response 
stresses? 
displace-
ments ? 

Figure 5 : Structural analysis versus systems analysis 

To answer the question whether the problem of systems analysis is 
solvable and whether a solution will be unique a mathematical 
formulation of the problem has to be found. The verbal term 
'coincide' has to be replaced by a suitable error function D. 
Commonly used in 'best fit ' problems is the sum of squared 
deviations (e.g. Fourier series approximations) 

D 
or 
D 

J 
r: 

F - F* )2 dt (5) 

(6) 

The asterices * are denoting the measured or 'to be' function (F*) 
resp. discrete functional values (Fi*) of pile top force F. 
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Other error functions so as the sum of absolute values are 
possible. Experience must show which one is best. 
By means of the error function D an optimization problem is 
formulated : 

Minimize D(~,F,F*) 

subject to 

F H(~,v*), (7) 

where ~ is a vector containing the model constants, 
H is an operator or vector-valued function, representing the 

computational procedure . 

A problem of mathematical optimization has a solution when the 
domain for the variables which is described by problem (7) is 
bounded. The solution is unique if the domain is convex (ref.7,8). 
Both properties of the domain cannot easily be verified by strict 
mathematical proof. If the mechanical background of (7) is 
considered it is clearly to be recognized that the domain must be 
bounded i.e. there must be a finite solution for the velocities 
for given finite ( because measured ) exciting forces for a 
reasonable mechanical model. So it can be concluded that there is 
at least one solution. 
If the number of degrees of freedom of the pile-soil model is 
included in the vector of model parameters ~ the mathematical 
optimization problem (7) will of course not be convex. Best 
matches may be found for different models , a unique solution 
cannot be given. On the other hand , the mechanical solution , I 
i.e. the static pile capacity might be insensitive to model 
degrees of freedom if the error function itself will be less than 
some specified error value. 
With such a description of the formulated mathematical and the 
underlying mechanical model it must be concluded that the 
application of any optimization strategy with direct function 
evaluation like random search methods or evolution strategies 
(ref . B) could be successfully applied. 
If a subproblem with fixed model numbers of degrees of freedom is 
considered the convexity of (7) still cannot be shown by strict 
mathematical reasoning. Convexity can only be assumed by CAPWAP 
experience and by the idea that the physical background of the 
problem may reveal some underlying energy principle that directs 
the solution towards the 'best match'. With the assumption of 
convexity strategies that use gradients can be applied (ref.7). 

5. Conclusions for an improved CAPWAP procedure 

A complete automatic computational procedure as has been outlined 
needs some time to be developped and as development and working 
costs cannot be estimated by now a direct approach which makes use 
of the theoretical considerations is suggested : 

348 



1 . Choose a start model and a start time range 
2. Choose an error function and install procedures to 

compute its value 
3. Carry out CAPWAP computations with respect to a single 

parameter ( e.g . total static resistance, parameter for 
toe to skin resistance etc. ) 

4. Compute the error value and numerical gradients with 
respect to the chosen parameter, 

5 . Determine a step towards the 'best match' , i.e . the 
minimum error value, using the gradients 

6 . If the minimum is found, choose another parameter (e.g. 
damping ) and proceed with 3. 

7 . If parameter variations indicate that a minimum has been 
found for the model, an enlarged time range might be 
chosen for check of convergence, 

8. For check of sensitivity of the static resistance try 
another model 

A first step is of course to compute numerical error values and 
decide model alteration on this basis . As the author got to know 
recently this is already tried by Pile Dynamics Int. . The next 
would be to compute numerical gradients and respective increments 
of variables. 
Wit h the implementation of the additional computations not only a 
faster way of getting CAPWAP- matches could result but also a more 
reliable capacity prediction can be achieved because of the use of 
an objective numerical value to define the 'best match'. 
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